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Abstract. Self-interacting walks and polygons on the simple cubic lattice undergo a collapse
transition at theθ -point. We consider self-avoiding walks and polygons with an additional
interaction between pairs of vertices which are unit distance apart but not joined by an edge of
the walk or polygon. We prove that these walks and polygons have the same limiting free energy
if the interactions between nearest-neighbour vertices are repulsive. The attractive interaction
regime is investigated using Monte Carlo methods, and we find evidence that the limiting free
energies are also equal here. In particular, this means that these models have the sameθ -point,
in the asymptotic limit. The dimensions and shapes of walks and polygons are also examined
as a function of the interaction strength.

1. Introduction

Linear polymers in dilute solution appear to undergo a sudden collapse from an expanded coil
form to a compact ball when the temperature is decreased. This has been detected by light
scattering measurements of the radius of gyration [1, 2] and by viscosity measurements [3].

A model which has become standard for investigating this phenomenon is a self-avoiding
walk on a regular lattice with an additional interaction between pairs of vertices of the walk
which are unit distance apart but not joined by an edge of the walk. In two dimensions
this model has been investigated by transfer matrices [4], exact enumeration [5–8], Monte
Carlo methods [9, 10], and by a combination of techniques [11]. The corresponding model
in three dimensions has been studied by exact enumeration [12, 13] and by Monte Carlo
methods [14–18].

An interesting extension of this problem is to ask if the topology of the polymer has
an effect on the collapse behaviour. The simplest case to investigate is a ring polymer,
which can be modelled as a (self-avoiding) polygon on a lattice. This model has been
investigated by Maes and Vanderzande [19] using exact enumeration and series analysis for
the square lattice, who found that rings and walks collapse at about the same temperature.
See also [20].

In this paper we investigate the corresponding problem on the three-dimensional simple
cubic lattice. In three dimensions there are additional interesting effects since polygons
can be knotted [21]. Here we concentrate on comparing the behaviour of walks with
the behaviour of the set of all polygons, without regard to knot type. The plan of the
paper is as follows. In section 2 we prove that polygons have a limiting free energy
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(i.e. the thermodynamic limit exists) at all temperatures for both attractive and repulsive
interactions. When the interaction is repulsive we prove that the limiting free energy for
polygons is identical to that of walks, at all temperatures. This proof does not extend to
attractive interactions and we study that regime, in section 3, using Monte Carlo methods.
We present results consistent with the limiting free energies of walks and polygons being
equal at all temperatures for attractive interactions. In section 3 we also present results
about the dimensions and shapes of walks and polygons in the attractive regime. Section 4
contains a summary and discussion of our results.

2. Rigorous results on free energies

Let Z3 be the simple cubic lattice whose vertices are the integer points inR3, and with
edges between vertices which are unit distance apart. Ann-step self-avoiding walkis an
ordered sequence ofn + 1 vertices such that the first vertex is the origin, neighbouring
pairs of vertices in the sequence are unit distance apart and all vertices are distinct. We
often usewalk to mean self-avoiding walk. A walk and any translation of the walk form an
equivalence class and we also use walk as a shorthand forequivalence class of self-avoiding
walkswhen it is not likely to cause confusion.

An n-step self-avoiding circuit (n-SAC) is an(n−1)-step self-avoiding walk whose first
and last vertices are unit distance apart, and the additional edge between these two vertices.
Any cyclic permutation of ann-SAC is also ann-SAC, and so is the reverse permutation and
all cyclic permutations of the reverse permutation. The resulting set of 2n n-SACs which
originate from a givenn-SAC can be regarded as a single geometrical object, which we call
ann-step (self-avoiding) polygon. Twon-step polygons are equivalent if one is a translation
of the other. We also use the word polygon for an equivalence class of polygons, when no
confusion is likely to arise.

A contactis a pair of vertices of the walk or polygon which are unit distance apart, but
which are not incident on a common edge of the walk or polygon. We writecn(m) and
pn(m) for the numbers of self-avoiding walks and polygons withn edges andm contacts.
We shall be interested in the partition functions

Zn(β) =
∑
m

cn(m) eβm (2.1)

and

Zo
n(β) =

∑
m

pn(m) eβm . (2.2)

β = 0 corresponds to the pure walk and pure polygon problems (i.e. the infinite temperature
limit), β < 0 corresponds to repulsive interactions between pairs of vertices, andβ > 0
to attractive interactions. We expect a phase transition from a coil to a ball form for some
positive value ofβ.

Theorem 2.1.The limit

lim
n→∞ n−1 logZo

n(β) ≡ Fo(β) (2.3)

exists for allβ < ∞.

Proof. For a given polygon define thetop vertexto be the vertex with lexicographically
largest coordinates and thebottom vertexto be the vertex with lexicographically smallest
coordinates. Let(xt, yt, zt) be the coordinates of the top vertex, and(xb, yb, zb) the
coordinates of the bottom vertex. The top vertex has two edges incident on it, which are also
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Figure 1. Polygons used in the concatenation construction.

incident on vertices at two of the three points(xt − 1, yt, zt), (xt, yt − 1, zt), (xt, yt, zt − 1).
If the edge(xt, yt, zt) − (xt, yt − 1, zt) is an edge of the polygon we call this thetop
edge, and say that the polygon has a top edge of type 1. Otherwise we call the edge
(xt, yt, zt)− (xt, yrmt , zt −1) the top edge of the polygon, and say that the polygon has a top
edge of type 2. Similarly the edge(xb, yb, zb) − (xb, yb + 1, zb), if it exists, is thebottom
edgeand the polygon has a bottom edge of type 1, otherwise(xb, yb, zb) − (xb, yb, zb + 1)

is the bottom edge of the polygon, and the polygon has a bottom edge of type 2. We can
concatenate a polygon whose top edge is of typea (a = 1, 2) and a polygon whose bottom
edge is of typeb (b = 1, 2), through one of the four polygons shown in figure 1. In each
case we delete four edges and add twelve edges, so that the net increase is eight edges. In
addition we create six new contacts. This gives the inequality

pn+8(m + 6) >
∑
m1

pn1(m1)pn−n1(m − m1) . (2.4)

Since the number of polygons is exponentially bounded, it follows immediately [22] from
(2.4) that the limit

lim
n→∞ n−1 logZo

n = Fo (2.5)

exists. �

Theorem 2.2.For all β < ∞ the limiting free energyFo(β) is a convex and continuous
function of β, with non-decreasing left and right derivatives.

Proof. Zo
n(β) is monotonically increasing inβ and, since it is a polynomial in eβ , it is

continuous and bounded in any closed interval inβ. Therefore to prove that logZo
n(β) is a

convex function ofβ it is sufficient [23] to show that

logZo
n(β1) + logZo

n(β2)

2
> logZo

n((β1 + β2)/2) . (2.6)

Using Cauchy’s inequality we have

Zo
n(β1)Z

o
n(β2) =

∑
m1

pn(m1) eβ1m1
∑
m2

pn(m2) eβ2m2

>
(∑

m

pn(m) e(β1+β2)m/2

)2

= [
Zo

n((β1 + β2)/2)
]2

(2.7)

and, after taking logarithms, this establishes (2.6). Since the limit (when it exists) of a
sequence of convex functions is itself convex, this establishes thatFo(β) is convex (and
bounded above for finiteβ). It is therefore continuous and has left and right derivatives at
everyβ < ∞. Moreover, both derivatives are non-decreasing functions ofβ [23]. �

In order to prove results about the limiting free energy of self-avoiding walks we need
some subsidiary lemmas about unfolded walks. We write(xi, yi, zi), i = 0, . . . , n for the
coordinates of vertexi in ann-step self-avoiding walk. A self-avoiding walk isx-unfolded
if x0 < xi, ∀i > 0 andxi < xn, ∀i < n. Similarly, we define a walk (withn > 2) to be
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(x, z)-unfoldedif x0 6 xi andz0 < zi, ∀i > 0 andxn > xi andzn > zi, ∀i < n. We write
c
†
n(m) (c‡

n(m)) for the number ofx-unfolded ((x, z)-unfolded)n-step walks withm contacts,
and define the partition function

Z†
n(β) =

∑
m

c†
n(m) eβm (2.8)

with a similar definition ofZ‡
n(β).

We have the following lemmas about the free energies of unfolded walks.

Lemma 2.3.The limiting free energies

F†(β) = lim
n→∞ n−1 logZ†

n(β) (2.9)

and

F‡(β) = lim
n→∞ n−1 logZ‡

n(β) (2.10)

exist for all β < ∞.

Proof. Clearly Z
†
n(β) 6 6ne2βn so n−1 logZ

†
n(β) is bounded above for allβ < ∞. Two

unfolded walks can be concatenated by identifying the first vertex of one walk with the last
vertex of the other walk. This gives the inequality

c†
n(m) >

∑
m1

c†
n1

(m1)c
†
n−n1

(m − m1) (2.11)

since no new contacts are formed in the concatenation, and not all unfolded walks can be
obtained by this construction. Now multiply both sides by eβm, take logarithms and divide
by n, and letn → ∞. The existence of the limiting free energyF†(β) follows immediately.
The argument for the existence of the limit in (2.10) is essentially the same. �

We next prove that the limiting free energy for walks exists forβ 6 0.

Theorem 2.4.For all β 6 0, the limit limn→∞ n−1 logZn(β) ≡ F(β) exists andF(β) =
F†(β) = F‡(β).

Proof. Let Cn be the set ofn-step self-avoiding walks, and letC†
n be the set ofn-step

x-unfolded walks. Unfolding defines a surjection fromCn to C
†
n. However, at most

eO(
√

n) members ofCn map to the same member ofC
†
n [24]. Number the members of

Cn i = 1, 2, . . . , cn, and the members ofC†
n l = 1, 2, . . . , c

†
n. Suppose that unfolding maps

the ith member ofCn to the l(i)th member ofC†
n. Let m(i) be the number of contacts in

the ith walk in Cn, and letm(l(i)) be the number of contacts in thel(i)th member ofC†
n.

Clearly

m(l(i)) 6 m(i) (2.12)

so that

eβm(i) 6 eβm(l(i)) (2.13)

for any β 6 0.
Since any unfolded walk is a walk

Z†
n(β) 6 Zn(β) . (2.14)
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Moreover,

Zn(β) =
∑
m

cn(m) eβm =
cn∑

i=1

eβm(i)

6
cn∑

i=1

eβm(l(i)) 6 eO(
√

n)
c
†
n∑

l=1

eβm(l)

= eO(
√

n)Z†
n(β) (2.15)

for any β 6 0. After taking logarithms, dividing byn and lettingn tend to infinity, this
(together with (2.14)) implies thatF(β) = F†(β). Using a similar argument we can show
that

F‡(β) = F†(β) (2.16)

for all β 6 0, and this is a key ingredient in the proof of the following lemma. �

Lemma 2.5.The limiting free energies of polygons and(x, z)-unfolded walks are related by
the inequalityFo(β) > F‡(β) for β 6 0.

Proof. The set ofn-step(x, z)-unfolded walks can be divided into subsets according to the
value of theheighth = zn − z0 of the walk. There are no more thann such subsets, which
we call C‡

n(h), h = 1, . . . , n, whereh is the height of the members of the subset. Let the
number of members ofC‡

n(h), which havem contacts, bec‡
n(m, h) and define the partition

function Z
‡
n(β, h) = ∑

m c
‡
n(m, h) eβm.

For a given value ofβ, let ho = ho(β) be the smallest integer such thatZ
‡
n(β, ho) >

Z
‡
n(β, h) for all h. We define ann-loop as an n-step self-avoiding walk such that

x0 6 xi 6 xn, ∀i andz0 = zn < zi, ∀i 6= 0, n. Let the number ofn-loops withm contacts
be ln(m), with corresponding partition functionZl

n(β) = ∑
m ln(m) eβm. Concatenating a

member ofC‡
n(ho), with a second (not necessarily different) member, reflected in the plane

x = xn, gives a loop with 2n edges, so that

l2n(m) >
∑
m1

c‡
n(m1, ho)c

‡
n(m − m1, ho) . (2.17)

Hence

Zl
2n(β) > Z‡

n(β, ho)
2 >

(
Z

‡
n(β)

n

)2

. (2.18)

In a similar way one can split loops into classes and concatenate in pairs to form polygons,
giving the inequality

Zo
2n(β) >

(
Zl

n(β)

n2

)2

. (2.19)

Therefore

Fo(β) > F‡(β) (2.20)

which completes the proof. �
Next we give an inequality between walks and polygons.

Theorem 2.6.

lim inf
n→∞ n−1 logZn(β) > Fo(β) (2.21)

for all values ofβ. In particular, forβ 6 0, Fo(β) 6 F(β).
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Proof. Each polygon can be converted to a walk by deleting the bottom edge, and assigning
a direction. This reduces the number of edges by one, and increases the number of contacts
by one, so that

cn−1(m + 1) > pn(m) (2.22)

and the result follows after multiplying both sides by eβm, summing overm, taking
logarithms, dividing byn, and lettingn go to infinity. �

Corollary 2.7. The limiting free energies of walks and polygons are equal for allβ 6 0.

Proof. This follows immediately from lemma 2.5 and theorems 2.4 and 2.6. �

We next explore the consequences of an additional hypothesis, whose validity we shall
test numerically in the next section. If we assume that the mean number of contacts in
a (large) polygon is at least as large as the mean number of contacts in a walk, then we
can prove that the limiting free energy for walks exists, and that it is equal toFo. This
hypothesis seems to be a very reasonable one since polygons are expected to have a smaller
radius of gyration than walks, and so are expected to be more ‘compact’, and therefore to
have more contacts. The condition is easily checked numerically, and this theorem will play
an important role in our interpretation of the numerical evidence presented in the following
section.

In order to state the theorem we need some additional notation. Let〈m〉n be the mean
number of contacts for ann-step walk (where we suppress theβ dependence), and let〈m〉on
be the corresponding quantity for polygons. Clearly

〈m〉n = ∂ logZn(β)

∂β
(2.23)

with a similar relation for〈m〉on. Let Fn = n−1 logZn(β) andFo
n = n−1 logZo

n(β).

Theorem 2.8.If 〈m〉on > 〈m〉n for all sufficiently large evenn and for all β > 0, then
limn→∞ Fn ≡ F exists andF = Fo for all β.

Proof. Since〈m〉on > 〈m〉n thenFn(β) − Fo
n (β) is a non-increasing function ofβ. Hence,

for any β > 0,

Fn(0) − Fo
n (0) > Fn(β) − Fo

n (β) . (2.24)

Let n → ∞, giving

F(0) − Fo(0) > lim sup
n→∞

Fn(β) − Fo(β) (2.25)

where we have made use of theorem 2.1. But by corollary 2.1, we know thatF(0) = Fo(0),
so

lim sup
n→∞

Fn(β) 6 Fo(β) . (2.26)

This, together with theorem 2.6, implies the existence of the limit limn→∞ Fn(β), and that
it is equal toFo(β). �
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3. Monte Carlo simulation of walks and polygons

3.1. Numerical methods

In this section we describe the numerical techniques which we use to estimate
thermodynamic and metric properties of walks and polygons for positiveβ. The numerical
simulation of interacting walks by a Monte Carlo algorithm was discussed in [18], and
we use similar methods for polygons. In particular, two novel implementations of the
Metropolis algorithm were used for walks, namelyumbrella samplingandmultiple Markov
chain sampling. These algorithms were implemented on an underlying Markov chain
realized by a hybrid algorithm acting on the state space of walks or polygons. The hybrid
algorithm was composed of a pivot algorithm for walks or polygons [25, 26] and a Verdier–
Stockmayer algorithm [27] enriched by crankshaft moves. The pivot algorithm operates
well in the expanded phase, but we found that the local algorithm is essential in shortening
autocorrelations in the strongly interacting regime [18].

Umbrella sampling is achieved by sampling from anumbrella distribution, which we
choose to cover the Boltzmann distribution(s) from which we are interested in sampling [28].
The only parameter in the partition function (2.1) is the interaction strengthβ, which can
also be thought of as an inverse temperature. Our aim is to estimate ensemble averages at
fixed temperatures. The umbrella distribution is chosen not only to cover the Boltzmann
distribution of interest, but also to extend to higher temperatures where the mobility of
the Markov chain is increased, so that we avoid ‘quasi-ergodicity’ problems [29] in our
simulation. In addition, we can compute ensemble averages at any temperature covered
by the umbrella distribution. In order to define the umbrella distribution, we define the
following distributions by the generic functional

πk =
∑

j

w(βj ) eβj m(k) (3.1)

wherew(β) is a weighting factor which we must choose to define the umbrella, and where
m(k) is the number of contacts in the polygon (or walk) labelled byk. In terms ofπk we
define our umbrella distribution as5 = ∑

k πk. The set{βj } is chosen to cover the range
we wish to cover in a single run. The elements of this set cannot be too far apart if we want
to have adequate sampling, and not too close either, since the exponentials are expensive
in computer time. The main advantage of this form for the umbrella distribution is that the
weights can be estimated from excess free energies estimated in some other way. Loosely
speaking, we wish to sample equally from every distribution in5. We can achieve this
by adjusting the weighting factors such thatw(βj )

∑
k eβj m(k) is independent ofβj , and we

can conveniently put it equal toZo
n(0), the partition function at infinite temperature (or zero

interaction strength). Now since
∑

k eβj m(k) = Zo
n(βj ) = enFo

n (βj ), whereFo
n (β) is the free

energy of a polygon withn vertices, we can solve for the weighting factors to find

w(βj ) = e−n(F o
n (βj )−Fo

n (0)) . (3.2)

The umbrella distribution can be implemented Metropolis-style on the underlying
(symmetric) hybrid algorithm by assigning a weightπk to each conformation. Note that the
weighting factors are exponentials of relative free energies of the walks or polygons; hence,
we need to have good preliminary estimates of these in order to find a suitable umbrella.
On the other hand, if a suitable umbrella is used, then one can compute improved weighting
factors, and thus more accurate relative free energies.

The multiple Markov chain algorithm [30] is similarly implemented on the hybrid
algorithm above. In this case, we sample Metropolis-style for a Boltzmann distribution
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at some fixed temperature. A number of these Markov chains are realized in parallel at a
sequence ofβ-valuesβ1 < β2 < · · · < βm, and we allow the chains to interact (by possibly
exchanging conformations) as follows. Select two chains at (say)βj andβj+1 with uniform
probability. A trial move is an attempt to swap the two current conformations of these
chains. Ifρk(β) is the probability of the statek in the chain atβ, andSj andSj+1 are the
current states in thej th and(j + 1)th chain, then we accept the trial move (and swapSj

andSj+1) with probability

r(Sj , Sj+1) = min

(
1,

ρSj+1(βj )ρSj
(βj+1)

ρSj
(βj )ρSj+1(βj+1)

)
. (3.3)

The whole process is itself a Markov chain, which we call thecomposite Markov chain.
Since the underlying Markov chains are ergodic, so is the composite Markov chain, and
the composite chain is in detailed balance since the ‘swap’ move as well as the moves
in the underlying chain are in detailed balance [18, 30]. Consequently, the invariant limit
distribution is the product distribution of separate Markov chains atβ1 < β2 < · · · < βm.

3.2. Numerical results: thermodynamic properties

In this section we report our numerical estimates of a variety of properties of both polygons
and walks, and we include results both from umbrella sampling and from multiple Markov
chains. In obtaining results by umbrella sampling we made use of preliminary estimates
of the free energies by multiple Markov chain sampling [18], in order to form preliminary
estimates of the weighting factors, and the weighting factors were then improved iteratively.

Table 1. Peak positions of the heat capacity estimated by multiple Markov chains and by
umbrella sampling, for both walks and polygons. The error bars are one standard deviation.

n mmc walk umbrella walk mmc poly umbrella poly

300 0.400± 0.020 0.397± 0.010 0.375± 0.030 0.400± 0.015
400 0.380± 0.010 0.383± 0.012 0.367± 0.022 0.373± 0.015
500 0.370± 0.010 0.375± 0.012 0.358± 0.011 0.363± 0.020
600 0.370± 0.010 0.366± 0.011 0.355± 0.025 0.358± 0.015
800 0.356± 0.015 0.350± 0.010 0.350± 0.025

1200 0.340± 0.010 0.334± 0.010 0.338± 0.020
1600 0.329± 0.010 0.330± 0.010

In order to compare the results from umbrella sampling and from multiple Markov
chains, we report in table 1 our estimates of the peak positions in the heat capacity as
a function ofn, for both walks and polygons. Typically the umbrellas used were made
up from 100 Boltzmann contributions, and we used between 10 and 20 parallel Markov
chains in the multiple Markov chain sampling. For polygons, the agreement between the
results using the two methods is excellent up ton = 600 but, for larger values ofn, we
were unable to construct adequate umbrella distributions, and the corresponding estimates
were less reliable. Hence, for values ofn greater than 600 we rely on multiple Markov
chain estimates for properties of polygons. For walks, we were able to construct good
umbrella distributions forn 6 1200 but not for larger values ofn. For n = 1600 we rely
on estimates from multiple Markov chains. The estimates given here for walks are in some
cases improvements over the values reported in [18].

The peak positions decrease to smaller values ofβ asn increases both for walks and for
polygons, as shown in figure 2. The rate of change is controlled by the cross-over exponent
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Figure 2. The heat capacity of polygons as a
function of the interaction parameterβ, for n =
200 (�), 400 (4), 800 (◦), 1200(•).

Figure 3. The locations of the heat capacity peaks for
walks (•) and polygons(◦) extrapolated against 1/

√
n.

Figure 4. The difference in the relative free
energies of polygons and walks, [Fo

n (β) − Fo
n (0)] −

[Fn(β) − Fn(0)], as a function of β, for n =
200 (�), 400 (4), 800 (◦), 1200(•).

φ which we believe has mean-field value1
2 [31, 32] in three dimensions for both walks and

polygons. Assuming this value, and ignoring a possible log correction, we can extrapolate
the peak positions to infiniten, as shown in figure 3, obtaining

β2 =
{

0.2779± 0.0041 for walks

0.2782± 0.0070 for polygons .
(3.4)

These values are consistent with walks and polygons collapsing at the same value ofβ.
Results in two dimensions [19, 33] are also consistent with this transition occurring at the
same value of the interaction parameter for walks and polygons.

We next examine directly the difference between the free energies for walks and
polygons as a function ofβ. In figure 4 we plot [Fo

n (β) − Fo
n (0)] − [Fn(β) − Fn(0)]

againstβ for several values ofn. The difference in the relative free energies decreases as
n increases, consistent with the limiting free energies being equal for all values ofβ. To
test this idea further we make use of theorem 2.8, proved in the previous section. There we
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Figure 5. The ratio of the mean number of contacts
for polygons and walks as a function ofβ, for n =
200 (�), 400 (4), 800 (◦), 1200(•).

Figure 6. The maximum value of the ratio of the
mean number of contacts for polygons and walks,
extrapolated against 1/

√
n.

showed that if the mean number of contacts for polygons is at least as large as the mean
number of contacts for walks, at allβ > 0, for n sufficiently large, then the limiting free
energies are equal. We test this condition numerically by plotting〈m〉on/〈m〉n againstβ for
several values ofn, in figure 5. These results clearly support the validity of the hypothesis,
and therefore the equality of the limiting free energies.

If the limiting free energies are equal, then the ratio〈m〉on/〈m〉n must approach unity as
n increases, for allβ. In figure 6 we extrapolate the maximum value of〈m〉on/〈m〉n over all
positive β against 1/

√
n. The intercept is about 1.02 and supports the scenario described

above.

3.3. Numerical results: metric properties

We now turn to a consideration of the radii of gyration of polygons and walks as a function
of n andβ. We have computed the mean-square radii of gyration,〈Sn(β)2〉 and〈So

n(β)2〉, for
walks and polygons, respectively, using both multiple Markov chain and umbrella sampling
for n 6 600. The agreement between the two sets of estimates is excellent. For larger
values ofn we rely largely on estimates from multiple Markov chain sampling.

In figure 7 we show theβ dependence of〈Sn(β)2〉 and〈So
n(β)2〉 for n = 800. We note

the strong dependence onβ consistent with collapse of both walks and polygons for large
positive β, and the fact that the radii of gyration of walks and polygons become almost
equal forβ sufficiently large.

We expect that

〈So
n(β)2〉

〈Sn(β)2〉 = Ao(β)

A(β)

(
1 + Bo(β) − B(β)

n1
+ · · ·

)
(3.5)

for β < β2. We have estimated the amplitude ratioAo(0)/A(0) at β = 0, and our estimate
is 0.538± 0.006, in good agreement with previous series estimates [34, 35], and with a
first-orderε calculation [36].
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Figure 7. The radii of gyration of walks (upper curve)
and polygons (lower curve) forn = 1200.

Figure 8. Extrapolation of the ratio of mean-square
radii of gyration against 1/ ln n at β = 0.28.

Figure 9. Then dependence of the ratio of mean-square
radii of gyration atβ = 0.45.

At the critical pointβ = β2 we expect [32] that

〈So
n(β)2〉

〈Sn(β)2〉 = Ao
2

A2

(
1 + Bo

2 − B2

ln n
+ · · ·

)
. (3.6)

In figure 8 we plot〈So
n(β)2〉/〈Sn(β)2〉 evaluated atβ = 0.28 against 1/ ln n. The behaviour

is quite linear, supporting the logarithmic behaviour of the correction term, and we estimate
the amplitude ratio to be 0.479± 0.003.

In the collapsed regime the way in which the limiting behaviour is approached is not
so clear and we simply plot the ratio of the radii of gyration, atβ = 0.45, againstn in
figure 9. It seems likely that the ratio is going to unity and, certainly, the limiting value is
greater than about 0.98.

We have also computed the radii of gyration tensors, and their eigenvalues,λ1 > λ2 >
λ3, and we show in figure 10 the ratio〈λ3〉/〈λ1〉 for both walks and polygons, as a function
of β for n = 600. At smallβ the walks are more aspherical than the polygons, as expected.
This asphericity decreases asβ increases, and the asphericities approach one another at
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Figure 10. The β dependence of〈λ3〉/〈λ1〉 for walks
(lower curve) and polygons (upper curve) forn = 600.

larger values ofβ.

4. Summary and discussion

In this paper we have considered the thermodynamic and metric properties of interacting
self-avoiding walks, and interacting polygons on the simple cubic lattice,Z3. In section 2
we showed that the limiting free energy of polygons exists, for allβ < ∞, and is a contin-
uous and convex function ofβ. For walks we have shown that the corresponding limiting
free energy exists forβ 6 0 and is equal to that of polygons. In addition, we showed that
if the mean number of contacts for polygons is at least as large as the mean number of
contacts for walks (for all positiveβ andn sufficiently large), then the limiting free energy
for walks exists for positiveβ and is equal to that of polygons. In particular, this would
imply that if walks and polygons collapse, they do so at the same temperature. Although
we are unable to establish the validity of this additional hypothesis, we regard it as being
likely to be true, since it seems closely related to the fact that polygons have a smaller
radius of gyration than walks.

In section 3 we briefly described the two sampling techniques used in our Monte
Carlo study of this problem. We presented evidence that the hypothesis described above is
satisfied, providing strong evidence that the limiting free energies are equal. The behaviour
of the heat capacities strongly supports the existence of a collapse transition, and we have
estimated its location. We also examined the behaviour of the radii of gyration as a function
of n andβ, and of the shape ratio〈λ3〉/〈λ1〉. We estimated the ratio of amplitudes for the
radii of gyration for polygons and walks and our estimate is in good agreement with previous
work at β = 0. At the critical point we see evidence of a logarithmic approach to the
limiting behaviour, and form an estimate of the corresponding amplitude ratio. Similarly,
in the collapsed phase, we present evidence that the amplitude ratio is close to unity, and
examine the rate of approach asn increases.

It would be very interesting and useful to establish rigorously the validity of the auxiliary
hypothesis used in section 2.
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